
Journal of Statistical Physics, VoL 34, Nos. 5/6, 1984 

Optimization by Simulated Annealing: 
Quantitative Studies 

S c o t t  Kirkpatrick I 

Received November 15, 1983 

Simulated annealing is a stochastic optimization procedure which is widely 
applicable and has been found effective in several problems arising in computer- 
aided circuit design. This paper derives the method in the context of traditional 
optimization heuristics and presents experimental .studies of its computational 
efficiency when applied to graph partitioning and traveling salesman problems. 
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1. I N T R O D U C T I O N  

Dan Gelatt  and I, with help from several of our colleagues, have explored a 
general framework for optimization which uses computer simulation meth- 
ods from condensed matter physics and an equivalence (which can be 
made rigorous) between the many  undetermined parameters of the system 
being optimized and the particles in an imaginary physical system. The 
energy of the physical system is given by the objective function of the 
optimization problem. States of low energy in the imaginary physical 
system are thus the near-global opt imum configurations sought in the 
optimization problem. The trick we have used to find these is to model 
statistically the evolution of the physical system at a series of temperatures 
which allow it to "anneal"  into a state of high order and very low energy. 

Arguments for the validity of this approach, and some ideas which 
help in understanding how to use it effectively, are given in a paper which 
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has appeared recently. (1) That paper also gives an introductory review of 
the optimization problems in computer design to which the method has 
been applied. Additional work on global wiring by Mario Vecchi and 
myself has been described elsewhere. (2) 

One observation developed in Ref. 1 which must be repeated here is 
the importance of "frustration, in difficult optimization problems. Just as 
spin glass models are characterized by random interactions which cannot 
all be satisfied by any arrangement of the spins, the more challenging 
optimization problems are those in which conflicting constraints rule out 
any simple solution. Such constraints typically arise from tradeoffs between 
achieving high performance and assuring high reliability, and are ubiqui: 
tous. As in  spin glasses, where frustration introduces metastability and 
degeneracy into the low-temperature states of the models, in optimization 
frustration will make the search for good solutions very difficult. However, 
the degeneracy induced by frustration implies that there should be many 
equivalent acceptable solutions to a given problem if there are any. Thus it 
should not be necessary to find the absolute optimal solution. 

I n  this article, I discuss some of the questions of algorithmic efficiency 
and effectiveness which this work raises, by focusing attention on two 
problems for which there is extensive literature on good heuristic algo- 
rithms: min-cut partitioning of graphs, and finding an optimal tour for a 
traveling salesman. 

RELATION OF ANNEALING TO ITERATIVE IMPROVEMENT 

The most common framework used in heuristic methods of multivari- 
ate optimization is called iterative improvement. It can be seen as a special 
case of simulated annealing. In iterative improvement, one starts with the 
system in a legal arrangement, or configuration, C~, then rearranges it until 
an improved configuration, Cj, is found. @ then becomes the starting pont 
for further rearrangement. The process terminates when no further im- 
provements can be found. 

To apply iterative improvement to a problem, three things are neces- 
sary: 

i. A concise representation of the configuration, Cs, of the system; 
ii. A scalar objective function, g(Ci), reducing the objectives of the 

optimization process to a single number, quantifying tradeoffs between 
conflicting objectives; 

iii. A procedure for generating local rearrangements of the system. 
If we take placement of circuits on a chip as an example, a configuration is 
a specific assignment of each circuit to one of the available positions on the 
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chip and it can be represented by a list of the assigned circuit locations. 
The objective function should combine the amount of wire required to 
connect the circuits as placed (or the chip area needed to complete the 
wiring in certain styles of chip assembly), with other penalties for estimated 
circuit loading, heat buildup, timing requirements, or wiring congestion. 
Information about circuit function is contained in an appropriate data 
structure describing logical connections between circuits. This is used by 
whatever programs calculate g(C~) for a given configuration C~. Rear- 
rangements (7,.--> Cj are termed local if only a few elements of C i are 
different in Cj and if calculation of the change 

= g( C, ) - g( Cj ) 

requires much less computation than does calcuation of g(Ci) itself. For 
circuit placement, interchange of positions of two circuits is a local move. 
Interchanges are also sufficient, in the sense that the system can evolve by a 
sufficient number of interchanges from an arbitrary initial configuration to 
any desired final configuration. 

The inherent limitation in iterative improvement is that the process 
finds only local minima. Some tricks must be found in  each application to 
increase the likelihood that the solutions are reasonably close in quality to 
the unknown global minimum. 

When stuck, one might resort to more complicated moves, for example 
interchanging larger numbers of circuits. Typically, there are orders of 
magnitude more of these, and some care must be used to search only the 
ones likely to help get the system unstuck. The process of choosing complex 
moves effectively often embodies methods used in hand solution by experts 
familiar with the problem, and is a common feature of "expert systems" 
programming approaches. The drawback to this approach is that consulting 
experts is difficult and time-consuming, and the strategies gained in this 
way may become obsolete as the problems change. To a phYSicist, it is 
natural to view the expert's moves as a way of getting unstuck by "tun- 
nelling" in the directions in which the barriers between locally stable states 
are expected to be thin. 

One can also improve the results of iterative improvement by finding 
many such local minima, and keeping the best of them as the final result. 
But the physical analog is suggestive here. Iterative improvement is like 
splat cooling in metallurgy, in which energy is rapidly extracted from the 
system by contact with a massive cold substrate. The result in metallurgy is 
usually a glassy substance, or at best a polycrystalline material with some 
fixed small grain size. The structures obtained are characteristic of the fluid 
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at the temperatures where its viscosity becomes too large for further 
rearrangements. The fixed density of defects quenched into such a glass will 
cost some extensive amount of energy with respect to the energy of the 
substance in its ground state. 

By taking many quenches, one will find variations in this energy, but 
those variations will be intensive, and for sufficiently large systems will be 
much smaller than the energy difference between quenched and ground 
states. For finite systems, like the models studied in engineering applica- 
tions of simulated annealing, the difference between extensive and intensive 
quantities may not be so great, so experiments are needed to determine the 
variation observed in repeated iterative improvement and its size depen- 
dence. Some experiments of this sort are discussed below. 

It should be apparent at this point that simulated annealing is just 
iterative improvement done at a sequence of finite temperatures, with the 
Metropolis criterion (3) for accepting or rejecting a randomly generated trial 
move replacing the "improvement-only" rule used in the discussion above. 

The annealing schedule is a less well-defined concept. Loosely speak- 
ing, one wants to warm the system under study until it is fluid, cool slowly 
through the range of temperatures in which large decreases in the objective 
function are observed (indicating that freezing is occurring), then cool more 
rapidly through the lower temperatures until no further improvements are 
observed. It is not difficult to do this interactively for a particular problem, 
recording the number of iterations taken at each temperature for use on 
subsequent problems of the same type and size. 

An annealing schedule can be generated automatically by a slight 
generalization of the procedure described in Ref. 1. One first finds the 
"melting temperature" by starting at an arbitrary temperature, attempting a 
few hundred moves, and determining the fraction of the moves which are 
accepted. If that fraction is less than, say, 80%, the temperature is doubled. 
When the fraction of moves exceeds this threshold, a sufficient number of 
moves is taken to completely "melt" the system, and the cooling process 
can begin. In cooling the system, one decreases the temperature by a 
constant ratio, running at each temperature until every movable object has 
been moved a fixed number of times, or some allotted number of attempts 
at that temperature have been taken. If by taking running averages of the 
current value of the objective function it is determined that g(T) is 
decreasing rapidly, it may be necessary to repeat a temperature, or decrease 
T by a smaller ratio to ensure that the system stays close to equilibrium, 

In systems with relatively few degrees of freedom we have sometimes 
found that the objective function is not very smooth, so that it is difficult to 
approach a low-lying local optimum gradually at low temperatures. In such 
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cases, it may be more effective to search at a moderate temperature, with 
the program recording the best few solutions obtained so far. 

APPLICATION TO MIN-CUT PARTITIONING 

Partitioning o f  a system, usually represented by some sort of sparse 
graph, into two or more parts in such a way that the number of bonds of 
the graph which cross interpartition boundaries is minimized, is a very 
common problem in optimization. It occurs, for example, in many forms of 
computer-aided design of electronic hardware. The frustration in this 
problem arises from the competition between minimizing cuts and the 
requirement that the number of graph vertices in each partition be bal- 
anced. In Ref 1, we showed by explicit transformation that the objective 
function for a simple two-way partition problem is identical to an Ising spin 
glass Hamiltonian. The balance requirement appears as an infinite-ranged 
antiferromagnetic interaction and the cut minimization gives a random 
ferromagnetic interaction between vertices which are directly connected. 

A natural ensemble of partitioning problems is provided by the set of 
random graphs with N vertices and zN edges. The minimum number of 
edges which need be cut in bisecting such a graph can be extracted from 
the ground-state energy of the associated spin glass Hamiltonian. From 
extensive studies of the infinite-ranged spin glass we know that the ground- 
state energy has two terms, one proportional to the mean interaction 
strength and the other to the variance of the random interactions. For the 
min-cut graph partitioning problem this mean field theory result translates 
into the prediction that the optimal partition will cut zN/2 of the edges, 
minus a correction which is also proportional to N and scales as ~/z. This 
correction term is the ordering energy of the spin glass. 

Bui (in an unpublished masters' thesis) has recently surveyed the 
literature of this problem and derived some exact bounds on the minimum 
bisections of random graphs. (4~ In the general case his upper and lower 
bounds for the correction term scale as different powers of N, although for 
sufficiently dense graphs (z > 9), he obtains a result similar to the mean 
field theory prediction. 

To check the accuracy of the spin glass mean field theory in predicting 
optimal partitioning, ! generated samples of random graphs with z ranging 
from 2 to 8, and N from 128 to 2048, and used a simulated annealing 
program to obtain good partitions. The resulting ordering energies agreed 
with mean field theory in form, with a coefficient about 20% smaller than 
the mean field theory expression. 

These samples were also used to determine whether iterative improve- 
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ment with many random trials was more computationally efficient than 
simulated annealing. The distribution of results obtained in many "splat 
quenches" was Gaussian out to at least two standard deviations. The 
difference in number of bonds cut between the average result of iterative 
improvement and the result of annealing was five standard deviations for 
N = 512, z = 4 or 8, and 10 standard deviations for N = 512, z = 2. In all 
three situations, the running time of the annealing program was about 12 
times the cpu time of a single "splat quench." Since the best result one 
would expect to find by sampling 12 times from a normal distribution is 
about two standard deviations below the mean, simulated annealing is 
more efficient. 

As expected, the difference between splat quenched and annealed 
partitions sharpened as N increased. For N = 2048, the annealed result was 
18, 14, and 10 standard deviations below the mean splat quenched results, 
for z = 2, 4, and 8, respectively. The computing time for annealing, normal- 
ized to the time for a single splat quench, also increased with N. For 
N = 2048, z = 2, 4, and 8, this ratio was 24, 18, and 14, respectively. 

In one partitioning study using real logic to define the connection 
graph,(l~ the separation between the splat quenched result and the result of 
annealing is even greater. Apparently the presence of hierarchical structure 
in the logic causes freezing to begin at higher temperatures than would be 
the case in the artificially generated examples. D. S. Johnson (private 
communication) has also observed this difference in studies of annealing on 
other optimization problems. 

Apparently iterative improvement based on moving randomly selected 
sites from one side of the partition to the other is not very effective, but 
better algorithms are known. The best known scheme is due to Kernighan 
and Lin, (5) and has been implemented most efficiently by Fiduccia and 
Mattheyses. (6) Burstein and Goldberg have recently shown (7) that blocking 
transformations (not unlike a renormalization group transformation) can 
improve the results of this algorithm. I have compared my results with 
those of Burstein's program by generating random graphs and using both 
programs to look for optimal bisections. The best solutions found by one 
program can also be found by the other, but some interesting differences in 
the computational  efficiency of the two algorithms appeared. The 
Kernighan-Lin procedure appears to be very inefficient for low z. Bur- 
stein's program required longer running times than my program for z -- 2, 
while for large values of z, annealing required much longer times. Since the 
two programs were written in different languages, and used different data 
representations, no quantitative comparison was attempted. It should be 
noted, however, that the traditional algorithms consider only exact bisec- 
tions. If the problem permits some leeway in balancing the numbers of 
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vertices assigned to the two sides (most applications do), then the extra 
freedom in the annealing Hamiltonian permits better solutions to be found. 

TRAVELING SALESMAN PROBLEMS 

Another easily formalized optimization problem is the well-known 
"traveling salesman" problem, in which we are required to construct the 
shortest tour of a prescribed list of N cities. The frustration arises between 
the requirement that the path be as short as possible and the fact that the 
path must be a tour. An example of the application of simulated annealing 
to a traveling salesman problem is shown in Figs. l a - l c .  

To have a problem with known solution, we have put the cities in this 
example on the points of a regular 20 x 20 square grid, in a square of unit 
linear dimension. The optimal Path can be no shorter than one grid spacing 
per step, and one can easily convince oneself that such a path is achievable 
for a grid with an even number of points on a side. A normalized path 
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(a)-(c). Traveling salesman tours obtained by simulated annealing at temperatures 
(a) T = 1.0; (b) T = 0.3; and  (c) T = 0.0. 
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length, a, can be defined for each tour by dividing the tour length by the 
minimum path length, ~ - ,  which is a natural scale for less regular 
problems as well. 

To rearrange the salesman's path it suffices to select an arbitrary 
subsequence of points in the existing path and reverse the order in which 
they are traversed. This basic move is the simplest of a set introduced to the 
problem by Lin and Kernighan. (8'9~ With the extra power of annealing, this 
is sufficient to obtain solutions of problems with a few thousand cities 
which are as good as those found using exhaustive search with more 
elaborate and thus more time-consuming moves. 

At high temperatures (Fig. la), the salesman's path follows the under- 
lying grid for only a few steps at a time, and a = 1.85 in the example 
shown. At lower temperatures, the path is optimal for very long distances, 
with mistakes occurring in isolated local regions (Fig. l b, where a -- 1.04). 
The mistakes cannot be removed by the basic subsequence reordering 
move, but they do diffuse about until two such defects meet and annihilate 
each other. Finally (Fig. lc), the process concludes with one of the many 
possible exact minimum length tours, a -- 1.0. 

The sequence of phenomena occurring from high to low temperature 
are quite like those occurring as liquids solidify, with a slowly growing 
correlation length at high temperature, and the excess energy at low 
temperatures associated with locally stable defects which can only be 
removed by diffusion to the surface or by recombination. 

The regular arrangement of points studied in the figures is not repre- 
sentative of actual traveling salesman problems. A more realistic ensemble 
of problems is obtained by considering instances generated by placing 
points at random in a unit square. Distance will be defined as the sum of 
the horizontal and vertical separations of any two points (Manhattan 
metric). A succession of algorithms were considered: the "greedy" algo- 
rithm, in which the path always goes to the nearest remaining point; 
"greedy," followed by exhaustive two-bond optimization; "greedy," fol- 
lowed by exhaustive three-bond optimization; and simulated annealing 
using both two- and three-bond rearrangements as the elementary moves. 
"Two-bond" and "three-bond" refer to the rearrangements introduced by 
Lin and Kernighan (8'9) in which sequences are reversed, replacing two 
bonds, or displaced (possibly with reversal), replacing three bonds of the 
salesman's tour. 

Searching by simulated annealing always found better solutions than 
exhaustive iterative improvement with the same set of rearrangements, and 
simulated annealing with two-bond moves gave better solutions than ex- 
haustive search with three-bond moves for the sample sizes considered. The 
cost of simulated annealing with two-bond moves was kept proportional to 
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N 2 by fixing the annealing schedule. Thus for sufficiently large samples, 
simulated annealing with two-bond moves was less costly than exhaustive 
three-bond improvement, besides giving better answers. However, for this 
ensemble of problems the differences between the lengths of tours found by 
the different algorithms are not large, so in practice the simplest algorithms 
might be entirely adequate. 

The normalized lengths obtained for 20 samples of 100 points apiece 
were: (greedy only) c~ = 1.185 + 0.062; (greedy, followed by 2-opt) ~ = 
1.024 + 0.042; (greedy, followed by 3-opt) a = 0.981 _+ 0.041; (greedy, fol- 

lowed by simulated 2-bond annealing, followed by 2-opt) o~ = 0.969 +_ 
0.032; and (greedy, followed by simulated annealing using 3-bond moves 
involving sequences of up to 10 sites as well as 2-bond moves) c~ = 0.957 + 
0.030. Computing times for each 20-case run were: greedy only = 0.3 sec; 
greedly and 2-opt = 2 sec; greedy and 3-opt = 2 minutes, greedy then 
2-bond simulated annealing = 3.5 minutes; and for the final set of results, 
using restricted 3-bond moves and increasing all annealing times fourfold, 
elapsed time = 30 minutes. All times were on an IBM 3081K. 

Since the sample-to-sample variations were large, we show in Table I 
some results for specific samples, in this case with 400 points in the unit 
square. Again simulated annealing with 2-bond moves finds consistently 
better solutions than does 3-bond exhaustive iterative improvement. For 
400 points, the 3-bond exhaustive search took 544 sec to complete, while 
the simulated annealing program ran for 420 see. The exact value of ~ in 
the limit of a large system is not known. For samples with 900 points in the 
unit square, we obtained a = 0.931, averaged over four samples using 
restricted 3-bond moves and annealing. 

Table I. Results, 8 2D Traveling Salesman Problems with 
400 Cities Each, Randomly Distributed in a Unit Square. 

Lengths in Manhattan Metric, Normalized to ~ .  

Case Greedy 2-opt 3-opt MC 2-opt 

l 1.176 0.996 0.955 0.931 
2 1.214 1.036 0.982 0.954 
3 1.162 1.016 0.978 0.941 
4 1.213 1.006 0.955 0.941 
5 1.153 0.999 0.957 0.943 
6 1.139 1.023 0.972 0.950 
7 1.138 1.004 0.955 0.929 
8 1.140 1.044 0.971 0.958 

avg. 1.167 1.015 0.966 0.944 
i 
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Fig. 2. A traveling salesman's  tour taken in order to drill 6406 holes. 

Simulated annealing is effective on still larger samples. Figure 2 shows 
a tour found for an actual problem, caused by the need to drill 6406 holes 
in a printed circuit board with a large automatically positioned laser. The 
tour shown was found by applying "greedy," then 2-bond simulated 
annealing, then exhaustive 2-opt, in less than 20 rain of cpu time. It is 
about 25% shorter than the result of applying the greedy algorithm alone. 

CONCLUSION 

Experience with several optimization problems and the simulated 
annealing process for attacking them suggests that the metaphor connecting 
statistical physics in disordered matter and the sorts of hard optimization 
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p r o b l e m s  w h i c h  arise in e n g i n e e r i n g  of  c o m p l e x  sys tems is a p r o f o u n d  one,  

a n d  c a n  g ive  useful  ins ights  for  dev i s ing  e f fec t ive  heur is t ics .  
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